Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.RECT® SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

1 E‘

ELSEVIER International Journal of Solids and Structures 43 (2006) 5267-5294

Transient response of a thin cylinder with local
material inhomogeneity

Michael El-Raheb *

ATK Mission Research, Laguna Hills, CA, United States

Received 21 April 2005
Available online 1 July 2005

Abstract

Analyzed is transient response of a thin cylinder with a local material inhomogeneity to a pulse of short duration.
The Galerkin method is utilized to solve the inhomogeneous dynamic equations with the eigenfunctions of the homo-
geneous cylinder serving as trial functions. Also treated is response of the limiting cases of a disk and of a ring with the
same local inhomogeneity. All limiting cases yield to analysis when modulus E is approximated by segments of constant
E along the radius for the disk and circumference for the ring. Transfer matrices relating variables at the two ends of a
segment combine to satisfy continuity of variables at interfaces of segments. Curvature and axial dependence make the
cylinder unique in response properties that neither disk nor ring possess.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic response of thin cylinders has been treated extensively. Stanton (1988), Batard and Quentin
(1992), Honarvar and Sinclair (1996), Bao et al. (1997), Grinchenko (1999), and Wang and Ying (2001),
treat frequency response of thin cylinders. Soldatos and Ye (1994) treat anisotropic laminated cylinders
and Lin and Jen (2003) adopt the Chebyshev collocation method for the same problem. Hussein and Hey-
liger (1998) consider layered piezoelectric cylinders. Wang et al. (1997) utilize the Ritz method in the modal
response of ring-stiffened cylinders. Um et al. (1998) derive 3-D elasticity solutions to frequency response of
open cylinders. Cheung et al. (2003) analyze the 3-D vibration of solid and hollow cylinders by the
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Chebyshev—Ritz method. ElI-Raheb and Wagner adopt transfer matrices to treat frequency response of cyl-
inders connected to toroidal shells (1985), damped by constrained visco-elastic layers applied to the surface
(1986), and acoustic radiation from thin cylinders stiffened by discrete rings and annular disks (1989a).
Soldatos (1994) presents a compilation of more than 150 references on frequency response of solid and
annular elastic cylinders. Very few references discuss transient response. EI-Raheb and Wagner (1989b)
treat wave propagation in a thin cylinder with concentrated masses attached to its surface adopting a modal
approach. El-Raheb (2004) treats transient response of a thin metallic capsule made of a short cylinder
capped by disks and excited by an internal pulse of short duration. Stepanishen and Janus (1990) treat tran-
sient radiation and scattering from fluid loaded cylinders. Paul and Murali (1995) determine the axisymmet-
ric dynamic response of poro-elastic cylinders.

Many practical applications involve cylinders with local material inhomogeneity over part of the cylin-
der’s surface. Analysis of these applications relies mostly on general-purpose computer programs like finite
element, finite difference, finite volume and smooth particle hydrodynamics (SPH). These discretization
techniques are necessary to solve complicated geometries and realistic material properties. For transient
phenomena from external loads of short duration, these simulations may take several hours on personal
workstations. To validate results from these simulations, engineers tend to simplify geometry and proper-
ties like choosing a ring, an infinite shell or a plate. Understanding the validity of these approximations is
necessary since comparing results from a discretization method to flawed approximations may lead to more
uncertainty. An overly simplified model does not always yield a valid result, yet a complicated model from a
discretization method needs verification. The middle ground of an analysis that is neither a black box nor a
flowed oversimplification helps validating trends and most importantly understand phenomena.

Manufacturers of motor casings are concerned of heat sources impinging on the external metallic shell
causing rapid heating that may result in rupture of the casing and exposure of the solid fuel. These events
happen in the millisecond regime and although in the past, this problem was addressed assuming a quasi-
static condition, the rapid changes in properties may couple to wave propagation in the casing if a projectile
strikes it simultaneously. Flexural stresses magnify and ultimately cause failure. This phenomenon cannot
be captured from a quasi-static analysis.

The present work treats transient response of a thin cylinder with material inhomogeneity over a rect-
angular patch of the cylinder’s surface. In this patch, modulus changes smoothly from Ey to E¢(1 — o)
where 0 < o < 1. This simulates the response of a finite cylinder weakened locally by intense heating.

Section 2 treats the finite homogeneous cylinder. For simplicity and without loss of generality, the two
ends of the cylinder are assumed simply supported. A simple solution in terms of trigonometric functions
along the cylinder axis is then possible. For a thin cylinder, Koiter’s (1960) equations excluding rotary iner-
tia permit an infinite velocity of shear waves. This means that a shear pulse disperses almost instanta-
neously. This fault lies with the Kirchhoff hypothesis that plane sections remain plane and that wall
cross section is always perpendicular to the mid-plane surface. A consistent set of plate equations was de-
rived by Mindlin (1951) as a limiting case of the general three-dimensional theory of elasticity. These equa-
tions include rotary inertia and shear deformation, and limit shear waves to finite speed. Since these terms
affect mostly the high frequency and high wave-number modes of flexural vibration, a simplification devel-
oped in Appendix A first takes up only inextensional equations of Mindlin. The correction is then applied
to Koiter’s equations as a factor multiplying rotary inertia.

Section 3 treats the cylinder with modulus inhomogeneity over a rectangular patch adopting the Galer-
kin method. Displacements are expanded in terms of trial functions taken as the orthogonal eigenfunctions
of the homogeneous cylinder. The variational method minimizes the error committed in the equations of
motion and eliminates spatial dependence yielding ordinary differential equations in the time dependent
generalized coordinates of the expansion.

One limiting case is when the cylinder radius tends to infinity asymptotically producing a plate. Section 4
analyzes a disk with radial modulus inhomogeneity. Inhomogeneous properties are considered by
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segmenting the disk into annular regions. Each segment has constant properties that differ from one seg-
ment to another. Segments are joined via transfer matrices relating stresses and displacements at the two
boundaries of a segment. The stepwise discretization of modulus approaches the actual distribution as
the number of segments increases. The other limiting case is when axial lengths of cylinder and patch tend
to zero eliminating axial dependence. This limit leads to a ring with circumferential inhomogeneity. The
ring is divided into arc segments joined by transfer matrices as in the case of the disk (Appendix C).
Section 5 discusses the effect of inhomogeneity on transient response of cylinder, disk and ring.

2. Homogeneous cylinder

For a homogeneous thin cylinder, Koiter’s (1960) equations modified to include shear deformation are

0N, + l/aangg = phO,u
axNx() + 1/(160N()0 — Q(,/a = ph@,,v
0.0, + 1/adyQy + 1/aNg = phduw + p,,(x, 0) £ ()

h3
Qx = axMxx +%axllwa X = 1 + 2/K(1 - V)

n
0y = 1/adMyy — 20, Mg + % (B + O0)

(x, ) are axial and circumferential coordinates, (a, /) are cylinder radius and thickness, (p, Ey, v) are mass
density, modulus and Poisson’s ratio, 7 is time, (u, v, w) are axial, circumferential and radial displacements,
(Ny, My, Q;) are extensional resultant, moment resultant and shear resultant, x = 7%/12 is Mindlin’s shear
constant, and p,,(x, 0) and f,,(z) are spatial and time dependence of the applied normal pressure. The shear
deformation factor y is derived in Appendix A. The constitutive law relating stress resultants to displace-
ments gives

Now = No(@utt + (@0 — w) /a)
Ny = No(vO,u + (0gv — w)/a)
N = (1 —v)No(l/adpu + 0,v0)/2
My, = —Mo(Dw + v(Oggw + Ogv) /a*) (2a)
Mgy = —Mo(vOuw + (Qggw + Ogv) /a’)
My = (1 — v)Mo (0w + 0,0) /a
No = Eoh/(1 —v?), My =Eoh*/12(1 —1?)
Stresses are related to stress resultants by
Owe = Nuw/hy,  Go0e = Nog/h extensional
Oy = OM /I, ooy = 6M g/ flexural (2b)
T = 1.50./h, 199 = 1.5Q,/h shear
Substituting (2a) in (1) yields an eighth order system of partial differential equations in (u, v, w):
Du=p 3)
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Dyy = No(®y + (1 = v)/2a*gg) — phO,
Dy = Dy = No(1 +v)/2ad,
Dy3; = D3; = —Nyv/ad,
Dy = No((1 = v) /20y, + 1/a*d9p) + Mo/ a*(1/a*0gs + 2(1 — v)0y) — (1 + 172) phd,,
Dy3 = D3y = —Ng/a*dg + My /a*dp(1/a*0gg + (2 — v)Ouc) + phyi* Oy
Dy3 = MgV* + No/a® + ph(1 — 3?a®V?*)d,
V2 =0, + 1/d0p, V*=V>V? F=h/V12a
D is a symmetric differential operator matrix, u= {u,v,w}" is the displacement vector and

p=1{0,0, p,.(x, 0)f.(1)} T is vector of external tractions. Simply supported boundary conditions at x =0
and x =/ are expressed as

v=w=N,=M,=0 (4)

[ is cylinder length. For sinusoidal time dependence with radian frequency w and for w motions symmetric
about 0 = 0, the exact solution satisfying boundary condition (4) is

u(x, 0;1) Z Zu’"” Ww(X)Cu(0)e, s, =mn/l
i) = =3 Y S5, 0)
w(x, 0;¢) Z anm (%) C,(0)e™

S, Cr(x) = sin, cos(s,x), S, C,(0) = sin, cos(n0)

(n, m) are circumferential and axial wave numbers. The type of boundary condition does not affect wave
propagation for times earlier than reflections from the boundaries. For other boundary conditions, rela-
tions (5) can be substituted with other functions that satisfy other boundary conditions. For the homoge-
neous cylinder, these functional forms are determined analytically since the eighth order differential
operators (3) have constant coefficients yielding a solution in terms of exponentials:

=22 Zuknme“"’"*c =22 Z Vi@ 5, (0
= Z Z Zwknmeik”’"xcn(@)
n m k=1

Uiy Vim> Wienm are constant coefficients, and Ay, are complex exponents that derive from the dispersion
relation and are functions of w, E, p, v and A, a. The dispersion relation is obtained by substituting (5a) into
(3) with periodic time dependence. The procedure with other boundary conditions is the same as that for
classical simple supports, yet the analysis is more involved. Substituting (5) in (3) with p =0 produces a
single set of homogeneous simultaneous equations for each (n, m) combination

(5a)

(Ky — M?), i,y =0 (6)

nm

_ T . . . . . .
W = {thnns Opns Wan b K o 18 @ symmetric stiffness matrix with coefficients
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Kitim = 03(5,, + (1 = v)n’/2)
Kitzm = Kot m = 05(1 4 v)5,n/2
Ktz = Kistm = @4V
Kigzm = 0p(1 = )52 /2 4+ n* + 7 (2(1 — )52 +n?)) (7)
Ki23m = Kigoum = ogn(1 +7((2 — v)ss, +n°))
Kism = o(1 + 7 (53 +n?)?)
E/p(1—v?)/a, 5, =as,=mna/l
M,,,, is a symmetric mass matrix with coefficients
M;jm =0 Vij except
My = phy Mg = ph(1 + 777),  Masm = My = phnyi (8)
M3 = ph(1+ 77(5;, + %))
A non-trivial solution to (6) yields the eigenvalue problem
det M 'K, — 1o?|,, =0 (9a)
I is the unit matrix. Eq. (9a) determines the orthogonal eigenset
{ Uty Oy Woms; O } (9b)

For each (n, m) dyad, (9a) yields three distinct eigenfrequencies. The lowest frequency usually corresponds
to a w dominant flexural mode while the intermediate and high frequencies correspond to u# or v dominant
extensional modes.

Transient response to an external pressure pulse normal to the cylinder’s surface is determined by the
modal expansion

X 9 t Z Zanm U Cpy )CI(H)
(x 0 l Z Zanm Umn m Sﬂ(e) (10)
x 0; t Z Zanm WonSm )C,,(Q)

a.m(1) 1s generalized coordinate of the (n, m) mode. Substituting (10) in (3) and enforcing orthogonality of
the eigenfunctions produces a set of uncoupled ordinary differential equations in a,,,(t),

anm()+w anm anmfw( )/Nnm

2n
anm *awnm/ / pw X, 0 m ) ”(G)dgdx (11)
Nnm = 2 ( + 5n0)nphal[ + an + 7 /{((smwnm)z + (nwnm + Unm)z)]

() denotes time derivative and 9, is the Kronecker delta.
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3. Inhomogeneous cylinder

Consider a cylinder with a modulus inhomogeneity in the form
E(x,0) = Eye(x, 0)

8(x,0) = {1 — o[l —sech(B(r +rs)) — sech(B(r — r/))]}Z(x)©(0) (12a)
Xp—dpSx<xptdp, 0, <0<0f

= ((x=x,) + (@0))"?, 7y = [(1 = (aby/d;)*)(x = x7)* + (ab))]'"?
(x) =H(x—x;+ds) —H(x —xy — dy) (12b)
©(0) =H(0+0;) — H(0 - 0y)

m

H is the Heaviside function. In (12), E = E, throughout the cylinder’s surface except in a rectangular patch
with side lengths 2d,x 2al), centered at (x5 0) (see Fig. 1). For a square patch d,= alyand r,lies on a circle
with radius dr while for a rectangular patch r, lies on an ellipse with radii dy and a0 This choice allows
symmetry about the patch axes and a smooth transition from Ej along the patch perimeter to Eo(1 — )
at its center varying at a rate depending on f.

The equations of motion of the inhomogeneous cylinder are

Du+]~)u:p (13)

D is similar to the symmetric differential operator matrix D defined in (3) with the constants N, and M,

replaced by the functions Ny(x, 8) and My(x, 6), and D is a non-symmetric differential operator matrix
listed below:

511 = N(]A’XGX + (1 — v)/2a2N0ﬁ969
512 = No_’x\)/aag + (1 — V)/ZCZN()V(-)ax (143)
D3 = —No.wv/a

| thin cylinder

footprint.

inhomogeneous
patch E(x,8)

Fig. 1. Geometry of cylinder and inhomogeneous patch.
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521 = No,()v/aax + (1 — V)/zaNo,xa()
Dy = (1 —v)(Noy/2 + 2M,/a*)d, + (Nog + Moy/a®)]a*dy (14b)
Dys = —Noy/d®> + Moy)a* (v + 1/a0g) + 2(1 — v)M,,/a*Dy

Dy =0

Dy, = 2(1 — v)Mo,xg/a26x + (WMo + Moy@g/az)/azag
+ 2Moo((1 — v)0y + 1/a2800)/a2 + 2M01x/a26x0

Dy3 = (Mo + YMo00/@*)0cc + (vMocx + Mo go /@) /a*Opg
+2(1 = V)Mo /@ dg + 2Mo, Qe + 2Mo/a*Dno
+ 2M ./ a*Bygp + 2M 0/ a*Bgoo

(14c)

In (14) subscripts x and 0 following a comma stand for partial derivatives with respect to x and 0
respectively.

The Galerkin method is utilized to solve (13). Eigenfunctions of the homogeneous cylinder are taken as
trial functions. Substituting (10) in (13) yields

D ANl + (1= v)(k/a)* /2)uis + (1 + v)s;k/2avig; + vs;/awy|C;(x) Cx(0)

+ Noo(1 —v)/2a(k/aug; + s;0,;)C;(x)Sk(0) + Nox(sjux; + vk/avi; + v/awy;)S;(x) Ci(0) yay; (1)
+phy Z g C;(x) Ci(0) (1) = 0 (15a)

> Z{[No(l +v)s;(k/2a)ug; + (No((1 = v)53/2 + (k/a)") + Mo(2(1 = v)s] + (k/a)*)/a"Juy

+k(Mo((2 = v)s; + (k/a)?) + No) /@ wiy] S, (x)Sk(0) — [No(1 = v) (k/2a)uy

+ (1= v)s;(No /2 + 2Mo o [a® o + 2M o (1 = v)s;k /@’ wy] C;(x)Sk(0) — [Nogvs;/auy

+k(Nog + Moo/a®) javg + (Nog/a* + Moo(vs® + (k/a)?)/a*)wis]S; () Ce(6) (1)

Foh 32 DI+ Py = P, (3)S, (0 (1) = 0 (15b)

> Z{[Novsj/aukf + (Mo(s} + (kfa)* + 2(sin/a)’) + No/a® = Mou(s; + v(k/a)?)

— Mo (vs; + (k/a)®) /@ )wi; + k(No + Mo((2 = v)s} + (k/a)*) — Moy — Mo gg/@®) /@ v} (x) Ck(0)
— 2Mo (1 = v)s;(vg + hwyy) /@] C(x)Si(0) — 2M o5, [kvig /@ + (57 + (k/a)*)wii]C;(x) C(0)

+ Mo g[2((1 = v)s} + (k/a) Yo + k(s; + (k/a))wy] /a*S;(x)Sk(0) }ai (1)

+ ph ; Z[—kizka/’ + (1+Px((as;)” + K)wig)S;(x)C;(0)ii (1) = p,,(x, 0) (1) (15¢)

where the following notation was used:
S;, C;(x) = sin, cos(s;x), Sk, Cr(0) = sin, cos(k0)
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Multiplying (15a) by C,(x)C.(0)uy, (15b) by S,(x)S,(0)v,,, and (15¢) by S,,.(x)C,(O)W,,,,, integrating
over the cylinder surface, then adding the three equations yields a system of 3m.ny coupled ordinary differ-
ential equations in the generalized coordinates a,,,,,

Ka+Méi:ffW() (16)

2 34
Lm"/k_zzcnizljk—i_cfnnjk; 1 <m<mx50<n<n(]

i1=1 ih=

1
an,jk = E( + 5"0)5'”/5”knphal[ nm nm + Wﬁm + ;ZX((aSm)zwz + (nwnm + U"m)z)]
f = {07 Ovanm}

a = {a,,) " is the vector of generalized coordinates and Ngum 1s generalized force defined by (11). Let m, and

ng be the truncated number of terms in the m and # series of the constituent modes in (10), then the number

of equations in (16) is 3m,ny which is triple the number of dyads (m, n), to include the three distinct eigen-

functions (U, Vym»> Wam)1.2.3 for each dyad corresponding to the w,m, -dominant flexural motion, the u,,,-

dominant and the v,,,,-dominant extensional motion. Coefficients CW"L’ZM of the coupled stiffness matrix K,

are defined in Appendix B and coefficients of the diagonal mass matrix M are identical to N, in (11).
To diagonalize (16), form the coupled eigenproblem

M 'K, - Iolja=0 (17)

The eigenproblem (17) yields the orthogonal eigenset {® [ x, 0); w.;} where O f(x, 0) is the /th eigenvector
coupling the constituent modes {4y, Vs W) © by the coupling coefficients .t and o, are the corre-
sponding coupled eigenfrequencies. Expand the coupled displacement vector u. = {u,, v., w.}' in terms
of ®.(x, 0),

u.(x,0;t) = Zc; )D,(x, 0)

18a
(Dcl(x7 0) = {ucla Uclawcl} Z Zanm lunm X, 6 ( )
n=0 m=
uc(x, 0;1) Zc, uer(x, 0), ue(x, 0) Z Zanm 1t Crn (X) C (0)
n=0 m=
vc(x,H;t) = ZC](t)Uc[(x 0 U(l X, 0 Z Zanmlvnm m ,/,(0) (18b)
!
wc(x, 9 [ ZC] Wd X, 9 Wal X, 9 Z Zanm WS n(H)
n=0 m=

¢[t) is generalized coordinate of the /th coupled elgenfunctlon and u,,, is displacement vector of the (m, n)th
constituent mode. Substituting (18) in (13) and enforcing orthogonality of the {u., v.;, w.} set yields uncou-
pled equations in ¢/¢)

&i(t) + oei(t) = Nepf(2) (19)
xptdp o pOr
NCﬁﬂ = 4a/N‘-11/ / pw(x, Q)deedx
xr 0

1 2n
N = a/ / (uf, + vf, + w?l + ?zx(r)i, — W VW — 0eOgWer + W 0gve)) dO dx

—’whal/ZZZ (14 300)a2y 12y + U2y + W2y + P 1S a)* A+ (1 + 0]

n=0 m=
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Eq. (19) admits the solution

¢ = N i 0. (t —1)fip(1)dt
(1) / sin g (t — 1)f,(1)d (20)

Wej

If £,.(¢) is piecewise linear with ng conjoined segments

ng

folt) = ;(C; (e = ))H (1) = H(t = ;)] 21

;= Fo(tin) = Fu@) ) (G — 1), § = fu(ty), 1 = fult) = 0
Eq. (20) can then be integrated analytically.

4. Inhomogeneous disk

In the limit as the cylinder’s mean radius approaches infinity, the cylinder’s surface approaches a plate.
Furthermore, prior to reflections from the boundary, the region neighboring the excitation can be approx-
imated by a finite disk with diameter equal to cylinder length forced by an axially symmetric pressure acting
over a circular footprint. An inhomogencous modulus is considered by segmenting the disk into annular
regions. Each segment is homogeneous with constant properties that differ from one segment to another.
As the number of segments increases, the stepwise approximation of properties approaches the continuous
distribution.

Mindlin’s axisymmetric equations for a disk are

(V2 = 1/c20,)(V? = 1/c0,) + 12/ (c,h)*0u]w = [1/D — (V* — 1/20y,) /xGh]p (22a)
[DV? — ph®/120,]0,4y = phd,w — p (22b)

V=0, +1/ro,
2 =Eo/p(1 =), & =xkG/p, G=Ey2(1+v), D=Eyh’/12(1—?
where (w, i) are axial displacement and rotation, p is applied pressure, (Ey, G, v, p) are Young’s modulus,

shear modulus, Poisson’s ratio and mass density, (%, r;) are disk thickness and radius, and x is shear con-
stant. Assume that E(r) follows the axisymmetric profile

E(r) = Eo{l — a[l —sech(B(r +d;)) —sech(f(r —d,))]}; 0<r<d, (22¢)
consistent with that of the cylinder in Eq. (12). Divide the disk into m, annular segments ry; <7 < Fy41,
1 <j<my;+1 enclosing the central disk 0<r<ry. Discretize (22c) into steps with modulus
E/Ey\,...,E; ..., E, where Ey~ Ey(1 — oy applies to the central portion and E; applies to segment
ry; <1 < rgp1. For frequency response outside the central disk, the solution to the jth segment is

wi(r) = CiJo(kijr) + CyYo(kyr) + Cydo(kor) + CayYo(koyr)

¥;(r) = 61 (C1jo(kijr) + Co Yo (kyyr)) + 02,(CaiJ g (kajr) + Cay Yy (kayr) (23)

Sy = (=ki,+ /) [ky, 1=1,2

k1 5; are roots of the dispersion relation

(k; =1/l — 1/c2,0”) = 12/(cyh)* e = 0 (24)



5276 M. El-Raheb | International Journal of Solids and Structures 43 (2006) 5267-5294

For the central disk, the solution bounded at the origin is

wo(r) = CioJo(kior) + Cs0Jo(kaor)

Vo(r) = 810C10J 4 (k1or) + 020C30 (kaor) (25)
Moment and shear resultants are

M, =D@y +w/r), O, =rGh(@®w-+) (26)
Substituting (25) in (26) and defining fy = {Q,,, M,.};,8, = {w, '}, yields

fo = BrCo, gy = ByC (27)

Co = {C0, C30} ", Byy and By are 2 x 2 matrices with coefficients involving the radial functions and their
derivatives in (25) and (26). Evaluating (27) at r =r,; and eliminating C, yields an impedance relation

fo = Bgol (751)Bro(r51)8 = Zogy (28)
Substituting (23) in (26) and defining f; = {Q,.,,Mn-};, g = {w, lﬂ}JT yields
f; =By,C;, g =By,C; (29)

C,={Cy, Cy, Gy, C4j}T, By; and By, are 2 x 4 matrices with coefficients involving the radial functions and
their derivatives in (23) and (26). Defining the state vector at an interface as S; = {f;, gj}T then evaluating
(29) at the two boundaries of segment j then finally eliminating C; determines the transfer matrix of a seg-
ment relating S{r;) to S{(r,+1)

Si(rsje1) = TjnS;(ry)) = Bs_jl () Bs (7 j41)S;(rs )
{Bf‘,} (30)

B, =
J B

g/

Enforcing continuity of f; and g; at interfaces of segments and the impedance relation (28) at the first inter-
face produces a set of m + 1 tri-diagonal block matrices in the interface state vectors S;. For the case of 3
annular segments and a clamped boundary, the tri-diagonal block system takes the form

1T —-Zy, 0 0 1 (f p
tig tpy I 0 g 0
i1 to 0o -I o 0 f, 0
0 0ty tp, -1 0 & | _ 0 o)
t, ty O -1 0 0 fs 0
0 0 tys tp; -1 0 g; 0
sz tpz 0 I fs 0
L 0 0 0 I]\g, 0
[ty tioy ST
_t21,j t22,j ‘

I and 0 are 2 X 2 unit and null matrices. Re-write Eq. (31) as
TsSg =P (32)
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T is the global transfer matrix (31) and Sg = {S;,S,,...,S;,... ,Smxﬂ}T is the global state vector formed
of the ensemble of all interface state vectors. The homogeneous form of (32) yields the eigenvalue problem

det|Tg| = 0 (33)

and the eigenset {®y, i} with @ = {@, , dry, .-, Py, (l),,,s‘k}T7 é;+ = {9;,n,}, being the kth displace-
ment eigenvector of the jth segment.

Transient response is determined by expanding the global displacement vector
Go =1{g,8, .8, - ,gmv}T in its eigenfunctions

Go = > ar(t)®(r) (34)

Substituting (34) in (22) and enforcing orthogonality of the eigenfunctions produces uncoupled ordinary
differential equations in the generalized coordinates a,(f)

(1) + wpar(t) = =N /N

35
Ny = (@i[p), Niw = ph{®y|®y) (35)

wy, 1s the kth mode eigenfrequency.

5. Results

Consider a thin steel cylinder with 12.7 cm (=5 in.) mean radius, 50.8 cm (=20 in.) long and 1.27 cm
(=0.51in.) plate thickness, and material properties E, = 2.1 x 10'*> dyn/cm? (=30 x 10° psi), p = 8 g/cm’
(=7.5%x10"*1bs*/in.*), v = 0.3. Modulus inhomogeneity is in the form of Eq. (12a) with &« =0.8, =5,
dr="7.6cm (=3 in.) and af,= 7.6 cm (=3 in.). Coordinates of a point on the cylinder surface are denoted
by (x., y) where x. = x — x,is the axial coordinate relative to center of impact and y = af) is an intrinsic
length along the circumference (see Fig. 1).

The external excitation is a trapezoidal pressure pulse of unit intensity with 2 ps rise and fall times, and a
48 ps plateau, uniformly distributed over a square footprint with side d,,, = d,,, = 2.25 cm (=0.886 in.) cen-
tered at (x., 0) =(0,0). This square footprint matches the area of a circular footprint with radius
r, =127 cm (= 0.51n.). Location of footprint center imposes axial symmetry about x. = 0 so that only ax-
ial functions with odd m are included. This way, a total 1840 modes are included in the modal expansion.

Fig. 2(a)—(c) plots resonance spectra versus n with odd m as parameter for the low, intermediate and high
frequency modes (wr, wy, wy) in the range 0 < n < 30 and 1 < m < 39. For this interval of wave numbers,
resonances lie in the range 0.5 KHz < wy < 150 KHz, 1 KHz < w; < 170 KHz and 3 KHz < w; <280 KHz.
For n =0, only w; and wy are included while wyy is dropped as it corresponds to torsion modes that do not
couple in response to pure radial excitation.

Fig. 3 plots histories of the homogeneous cylinder at axial stations x./r, =0, 3, 6,9 along 6 = 0. Radial
displacement w peaks at £ = 50 ps corresponding to the time interval of the forcing pulse A#,(Fig. 3(a)). w
then falls to a plateau at 150 ps. At stations remote from the center of impact, w rises after a delay corre-
sponding to travel time of flexural waves from the footprint to that station with the phase velocity
¢y < VK/2(1 +V)c.,c. = \/E/p being the extensional speed. Axial displacement u is an order of magnitude
smaller than w and propagates with ¢, (Fig. 3(a2)). At x,. = 0, flexural stresses o, and gy, (Fig. 3(b1) and
(c1)) rise sharply following impact peaking at ¢ = Az, with magnitude 3 times applied pressure then fall
smoothly to zero. Remote from impact, magnitude of peak flexural stress does not exceed applied pressure
and shows a time delay corresponding to ¢, since u# and v couple to flexural stresses. Extensional stress o,
(Fig. 3(b2)) is an order of magnitude smaller than o, while ogg. ~ 30, (Fig. 3(c2)), and both propagate
with c,.
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Fig. 4 plots histories of the homogeneous cylinder at y stations y/r, =0, 3, 6, 9 along x, = 0. Comparing
dependent variables in Fig. 4 with the corresponding ones in Fig. 3 reveals that remote from impact, re-
sponse is not axially symmetric about the center of impact. The magnitude of circumferential displacement
v (Fig. 4(a2)) is twice that of u.
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Before discussing histories of the inhomogeneous cylinder, important features of the coupled modes are
outlined. The basic difference in modal properties of homogeneous and inhomogeneous cylinders concerns
three items: (i) eigenfrequencies, (ii) eigenfunctions, and (iii) normalized modal displacements. Examining
modal results from the disk and ring models aids in the understanding of modal properties.

Fig. 5(a) plots d = 100(w;, — w.)/w;, where w;, and . are eigenfrequencies of the homogeneous and inho-
mogeneous cylinders sorted in ascending order. Both sets include w;,w; and wgy. d starts at 20% for the
fundamental then falls to 10% for Q < 25 KHz except at a few isolated frequencies. For Q > 25 KHz, d falls
to very small values. Consequently, eigenfrequencies of the inhomogeneous cylinder are close to those of
the homogeneous cylinder except at isolated frequencies. In contrast, the average d of disk and ring is
approximately constant at 20%. This value approximately equals 0,/1 where 0,is half arc angle of the inho-
mogeneous segment.

Fig. 6 plots the modal dependent variables with wy,,, normalized to unity of a typical coupled mode at
Q =3.01 KHz. Fig. 6(al)—(d1) plot variables along x at # = 0 while Fig. 6(a2)—(d2) plot variables along 6 at
x. = 0. Except for u and v which are comparable to w, all variables are relatively small within the inhomo-
geneous patch

—dfgxﬁéd/ ,0<0<0f, 27[—0](<0<27T
Fig. 7 plots modal variables for a mode for a neighboring mode at Q = 3.39 KHz. Within the patch, all

variables are relatively larger than in the 3.01 KHz mode while u and v are still comparable to w. For most
modes, w in the patch is smaller than wy,,, and u, v are unusually large compared to corresponding modes



5280 M. El-Raheb | International Journal of Solids and Structures 43 (2006) 5267-5294

b
20r ]
d
101 1
0 . . . .
40
C
‘ | /\/\/\/—/_\/_/
20 - 1
0 n n n n
0 20 40 60 80 100

Q (KH2)

Fig. 5. Percent difference in Q from inhomogeneity—ax = 0.8, f = 5: (a) cylinder al,= dy=7.62 cm, (b) ring al,= 7.62 cm, (c) disk
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of the homogeneous cylinder. One way to identify the dominant (m, n) dyad of a coupled mode is by choos-
ing the (m, n) of the constituent mode with largest |, |-

Fig. 8 plots normalized average v,,, and w,,, versus mode number. For each mode v, is the ratio of v;ax
within the patch and wy,,x which is normalized to unity. The same applies to w,,,. Since the actual distri-
bution of v,,, and w,,, changes substantially from mode to mode, it is convenient to smooth data by “Fast
Fourier transform Filtering” with a 10-point sampling window. The result is a smooth average shown in
Fig. 8. For the inhomogeneous cylinder, w,,, (Fig. 8(al)) is almost constant at 0.5 with fluctuations of
40.1. This means that for most modes, w,,, in the patch is predominantly smaller than that outside the
patch. v,,, (Fig. 8(bl)) rises with mode number peaking near mode 1000 where wy ; lies. It then falls sharply
to values comparable with those at low wy. For the ring (Fig. 8(a2)), wa.. is close to unity at low frequencies
and diminishes up to the 40th mode then rises again near the fundamental extensional frequency wy; and
maintains a value of approximately 0.75. In the patch, the ring’s w,,, is larger than the cylinder’s with the
same parameters (o, f, dy). The ring’s v,,, (Fig. 8(b2)) resembles that of the cylinder without the falloff fol-
lowing wy; since for the ring the u-dominant modes do not exist. The cylinder’s u,,, closely follows v,,, in
shape and magnitude. This suggests that inhomogeneity may magnify extensional stresses in the cylinder.

Fig. 9 plots histories of the inhomogeneous cylinder at x./r, =0, 3, 6, 9 along 0 = 0. Within the patch,
comparing the same variables in Figs. 9 and 3 reveals that the inhomogeneity reduces w by a factor of 2
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(Figs. 9(al) and 3(al)), flexural stresses by 30% (Figs. 9(b1) and (c1) and 3(bl) and (c1)), while extensional
stresses are higher by a factor of 3 (Figs. 9(b2) and (¢2) and 3(b2) and (c2)) consistent with the increased
modal u and v. An explanation is that local resonant frequencies in the patch are denser due to the lower
modulus. Conditions of anti-resonance are then more probable explaining this apparent inertial rigidity
although statically the patch is weaker.

Fig. 10 plots histories of the inhomogeneous cylinder at y/r, =0, 3, 6, 9 along x. = 0. Remote from im-
pact y/r, =9, the magnitude of w is as large as at the center of impact y/r, = 0. All other variables resemble
those in Fig. 9. As with the homogeneous cylinder, response is not axially symmetric about the center of
impact.

Consider a disk with the same properties, plate thickness, footprint radius, modulus inhomogeneity and
forcing pulse as those of the cylinder. The disk radius r, is taken half the length of the cylinder //2. The
inhomogeneous patch is a concentric circle with radius r,= d. Fig. 11 plots E(r) from (22c) for the inho-
mogeneous disk. Fig. 11(a) shows one method with constant Ar discretization for 0 < r < r;, while Fig.
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11(b) shows another with a constant AE discretization. Numerical experiments indicate that results are
insensitive to the method of discretization.

Fig. 12 plots histories of the disk. Three cases are considered: a disk with E = E, (Fig. 12(al)—(cl)), a
disk with E = E(0) (Fig. 12(a2)—(c2)), and an inhomogeneous disk with E = E(r) as in (22c) (Fig. 12(a3)—
(c3)). Axial displacement w and flexural stresses o, and gy are similar in shape for the three cases. w rises
reaching a plateau at t = At,which is disturbed at the time when reflection from the boundary r = r,; reaches
that station. Since Ey = 5E(0), the time delay for the wave to propagate from the footprint to some station
remote from impact is longer by a factor of v/5 as shown in Fig. 12(al) and (a2), noting that phase velocity
scales as vE. Magnitude of w in Fig. 12(a2) is 30% larger than that in Fig. 12(al). In Fig. 12(a3) w(0) has
the same magnitude as that in Fig. 12(a2) since near the start, magnitude depends on local properties and
those match for cases 2 and 3 for r < . For ¢ > At;, w diminishes smoothly to reach a lower plateau con-
sistent with case 1 (Fig. 12(al)). Flexural stresses (Fig. 12(b1)—(b3) and (c1)—(c3)) are comparable for the
three cases and reach magnitudes approximately those of the homogeneous cylinder (Fig. 3(bl) and
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(c1)) and Fig. 4(bl) and (cl)). For the disk, reflections from the edge r = r, produce strong fluctuations in
response because, in radiating from the center of impact, each wave front is reflected from the edge at the
same time producing a condition of the reflected waves called coherence. This is absent for the cylinder due
to curvature and asymmetry of the boundaries with respect to center of impact (Fig. 3(bl) and (cl)).

Histories of the homogeneous ring are shown in Fig. 13(al)—(d1) and those of the inhomogeneous ring in
Fig. 13(a2)—(d2). For the homogeneous ring, w and oygs are more than three times those of the cylinder
while 64, is comparable (Fig. 4). Inhomogeneity in the ring increases w by a factor of 2, and reduces oy
by a factor of 2, and gy by a factor of 7. The only resemblance with the inhomogeneous cylinder is that
remote from impact and close to the inhomogeneous patch magnitudes of w and oy, are comparable to
those at the center of impact (Fig. 13(a2), (c2) and (d2) and Fig. 10(al), (c1) and (c2)). The reason for this
large difference between ring and cylinder is that the ring can also be viewed as a cylinder when axial dimen-
sions of cylinder, inhomogeneous patch and footprint tend to infinity. The extended length of the footprint
increases the excitation force which in turn raises w. All stresses are reduced because axial curvature and u
vanish.

A closer approach of cylinder response to the ring’s might be by extending patch length 2d,and footprint
length d,, to 48.3 cm which is almost the full length of the cylinder, while keeping patch width 20, , and
footprint width d,, the same. Therefore Fig. 14 plots the smoothed distribution of u,yy,Uayr and w,y, for this
more “ring-like” cylinder. However, Fig. 14(a) shows that u,,, does not diminish towards the vanishing lim-
it of the ring. Moreover, w,,, follows the trend in Fig. §(al) with a slight increase in magnitude. This sug-
gests that the cylinder’s extensional stresses may increase accounting for the deviation from the expected
trend of the ring.

Fig. 15 plots histories of this cylinder at y/r, =0, 3, 6,9 along x. = 0. Comparing these histories with
Fig. 10, note that except for 7,5 0.y, and gy increase by a factor of 5 and oy, increases by an order
of magnitude. It appears that the cylinder’s //a = 4 is still not high enough to approximate the ring’s state
of plane stress when axial dependence vanishes.
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6. Conclusion

The Galerkin method was employed to analyze wave propagation in a thin cylinder with material inho-
mogeneity within a rectangular patch over its surface. Limiting cases of the disk and ring were also analyzed
with a view to find a simpler but consistent approximation to treat inhomogeneity. Noteworthy features of
local inhomogeneity on response are:

(1) Except for isolated modes, resonant frequencies of the cylinder are not affected. In contrast, modal
quantities differ substantially from those of the homogeneous cylinder.
(2) In the patch,
(1) W, 0xxp, 0ggr are reduced while o,, 6gg. increase substantially.
(i1) w is substantially smaller than wy,,.
(ii1)) u and v are larger affecting o, Ggge-
(3) Normalized average modal displacements are reliable measures of stress response magnitude.
(4) Except for magnitude of o, and gy at first arrival, the disk poorly approximates the cylinder as it
lacks the extensional contribution.
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(5) The ring is weaker than the cylinder as it lacks axial stiffness and an increase in external excita-
tion. This can be explained by viewing the ring as a cylinder when all axial dimensions extend to
infinity.

(6) Neither disk nor ring possess the relevant features of the cylinder and therefore are not candidates for
supplying a consistent approximation to the cylinder. The disk lacks curvature coupling extensional
to flexural motions and the ring lacks stiffness imposed by axial dependence.

(7) Even when patch and footprint lengths are extended to cylinder’s length, a ratio of //a = 4 is not high
enough to approximate the ring’s state of plane stress. This demonstrates how sensitive extensional
stresses are to axial displacement.

Appendix A. Shear deformation factor

For a thin cylinder and harmonic motions in time, Mindlin’s (1951) flexural equation is identical to the
plate’s equation namely

[V2 + (p/kG)@*|[DV? + (ph* /12)w*|w — pher® = 0

Al
VZ = axx + l/azaﬁﬁ ( )
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(x, 0) are axial and circumferential coordinates, w is radial displacement, 4 is wall thickness, D = E,’/
12(1 — v?) is flexural rigidity, (E,, G) are Young’s and shear moduli, v is Poisson’s ratio, « is shear constant,
and p is density. For simply supported boundary conditions, an exact solution exists in the form

w(x, 0) = wy sin(s,x) cos(nf),

Sy =mm/l

(A2)
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(n, m) are circumferential and axial wave-numbers, and / and « are cylinder length and radius. Substituting
(A2) in (A1) produces the dispersion relation
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W7 (55, +17) = O[1 4 P (5, + 1) = (/)] =0 (A3)

Sw=asy, 1=14+E/kG(1—v)=1+2/k(1-v)

F=h/\12a, o, =\/12cG/p/h, @y = \/Eo/p(1 —v?)/a

(wo, wy) are ring and shear frequencies. The term % (s2 + n?) in (A3) represents rotary inertia. For i/
a < 1 then (wo/w,)” = 27*/Kk(1 —v) < 1, and for w = O(wy) then
(/) = 27 [i(1 —v) < 1 4 375 + n?) (A4)

This implies that in (A3) (w/w,)* can be neglected compared to the other terms yielding a consistent approx-
imation to the eigenfrequency

O = 7 (52, + nz)/\/ 1 + 7 (32 + n?) (AS)

Since in (AS5) the term 7 (52, + n*) in the denominator represents rotary inertia, then (A5) suggests that shear
deformation may be included in Koiter’s (1960) shell equations by multiplying rotary inertia by y. Fig. A.1
plots the error e,,, = 100((®exact — Dapprox)/ Dexact),,,, cOmmitted in the flexural resonances by this approxi-
mation versus m with n as parameter for a cylinder with the following properties:

a=127cm (=5in.), h=127cm (=0.5in.), [/=50.8cm (=20in.)
Ey =2.07 x 10" dyn/cm? (= 30 x 10° psi),
p=8g/em® (=7.5x 107" Ibs*/in.%), v=0.3
and for 0 < n < 30 and 1 < m < 30. Wexact i determined from relation (A3), and w,pprox from (AS5). In this

range, e, rises gradually with m and » but remains small (<8%) confirming the validity of the
approximation.

Appendix B. Stiffness matrix coefficients of inhomogeneous cylinder

In the coefficients defined in (B.1-B.6), superscript #; in Cf;;’i) refers to the equation number of its origin

where i; = 1, 2, 3 corresponds to (15a), (15b) and (15¢) respectively, and superscript i, =1, 2, 3, 4 refers to
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the term number in that equation. Each term multiplies a specific (x, 0) trigonometric function. Superscripts
and subscripts of /; 49%) are demonstrated in an example; e. g I3y () originates from the 3rd Eq. (15¢) and in-
cludes the derivative OB (x, ). Also, define hy = h/(1 — V?) and Iy = B3112(1 — v,

Choie = hil(s2 + (1 = v)(k/a) | 2)u + (1 + v)s;k/2avy; + vs;/awg uml (Bla)
Cmn,jk =h (1 - v)/za(k/aukj + Sjvki)u’1m[(10) (Blb)
Cfr:ri}k = Iy (jus; + vk /avi + v/awg )yl (Blc)

o = I (1 +v)sjk/2au + [ (1= V)57 /2 + (k/a)") + ha(2(1 = v)s} + (k/a)*) /@ o

+ k(2 = v)st + (k/a)?) + ki) ja*wig ol s (B2a)
Co = [ (1= v)k/2auy; + (1 = v)s;(h /2 + 2hy/a®)vg; + 2ha(1 = v)s;k @ wi|oaml s (B2b)
Com = —[hvs;/auy + k(hy + hy /@) @ + (hy + hy(vs? + (k/a)’) /a®) | @ Wi vaml (B2c)

Cove = {vs;/al ug + [ha(st + (k/a)* + 2(s;n/a) ) + b Ja’ 1 — (s + v(k/a) )15
— b (vs2 + (k/a) )1V JaPlwi; + klhy + ha((2 = )2+ (k/a) )Y — hyvl§™

= I @] J @i} (B3a)

Coie = —[2ha(1 = v)s;(vy; + kwyy) /@ w5 (B3b)

Conip = —2has kv /@ + (3 + (k/a) ) wigwynl S (B3c)

Comie = W[2((1 = v)s} + (k/a)* v + k(s] + (k/a))wy] fa Wl (B3d)
where

R L X (x)Cy X
- / / E(x, 0)C,(x)Cy(0)Co(x)C (0) d0dx
19— q / : / (6,08, (x) e (0)Con(x)C (0) dOdx (B4)
L L X (x)Sk X
- / / Eolx, 0)C,(x)Si(0)C (x)C, (0) dOdx
R . X (x)Sg X
- / / E(x,0)S,(x)51(0)5,,(x)S,(0) d0dx
—a / "B (x, 0)C,(x)S1 (0)Sn (), (0) dOdx (BS)

:a/ol /OMEU )C(0)S,n(x)S,(0) O dx
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1 2n
10— / / E(x, 0)S,(x) Ce (0)Sn(x)C (0) 0 dx
0 0
i 2n
19 =g / / E.(x, 0)C;(x) Ce (0) S0 (x)C (0) O dx (B6)
0 0

1 wa [ [ i 005,005,08, (61, (0) a0

19— g / | / ’ E(x,0)S(x)Ci(0)S,(x)C,(0) dO dx
1 —a [ [ Eule, 0)5,(6)Cu0)54 )G, (0) o
ng()) _ a/l /anxe(X, 0)C;(x)Sk(0)S,,(x)C,(0)d0dx

All integrals in B4,B5B6 which include derivatives of E(x, 0) vanish everywhere except over the area

Xp— \/di — (a0)2 <x<xp+ w/df- — (a@)2 and —0,< 0 < 0. To simplify the numerical evaluation of these

integrals E(x, 0) is extended to cover the square area x—d, < x < x,+ds —0,< 0 < 0, with E(x, 0) = E
over the intervals

xp—dy <x<xp— 1/d;—(a9)2 and xf—l—\/d%—(aH)z <x<xp—dy

Also, each integral can be expressed as the sum of three parts, the first two parts are evaluated analytically
and the last part numerically. As an example

1 2n
10— g / / E(x, 0)S,(x) Cu(0)8,,()C, (0) dOdx = 1) — 19) 4 19)
0 0
! 2n
1Y) = ak, / / S;(x)Cx(0)S,(x)Co(0) dOdx = Egmal(1 + 6,0)3,0;/2
0 0

o) Xpt+dy 0r
10) = ak, / / S,(x)C1(0)S,0(x)C, (8) dOdx
X —0r

= Eoal[(Sn—j(xr) = Suj(xr —ds))/(m = j) = (Swyj(xr) = Suy;(xp — dy))/(m + )] /m
[Suk(0r)/(n— k) + S,4(07)/ (n + k)]

Su_j(x) =sin((m — j)mx/1), S,_(0) =sin((n —k)0), etc.
10 =a / v / Y (6,008, (2)Ce(0)S(x)Co (0) dO e
xp—dy —0y

1g°f is over the entire cylinder when E = E, Igog is over the patch when E = E,, and 1503 is over the patch
when E = E(x, 0).
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Appendix C. Inhomogeneous ring

In the limit as cylinder length tends to zero, the x-dependence in Egs. (1) and (2a) vanishes yielding the
ring equations
1/a69N99 — Qg/a = ph@,tu

Cl
1/adyQy + 1/aN gy = phd,w + p,,(0)f.(1) “
ph'y
0y = 1/a69M99 + m (aé)ttW + attv)

N()():No(a()l)—w)/d, M()() = —Mo(a()()w—aov)/az

Since (C1) has constant coefficients, it has an exact solution in terms of exponentials. For harmonic motions
in time with radian frequency o,

6 6
0(0,0) =Y v’ w(0,0) =) wele”, i=v-1 (C2)
J=l1 j=1
Substituting (C2) in (C1) yields the sixth order polynomial
3
> o =0 (C3)
=0

3= NOMO/a6,02 = phw?(Noy* +M0/a2)/a2 + 2N0M0/a6
c1 = pha*(—My/a* + pho*y* — No(1 — 2%)/a*) Ja*> + NoM, /a®
co = ph*(1 + 1) (No/a® — phe?)
Assume a modulus inhomogeneity along 6 symmetric about 8 = 0 of the form
E(0) = Eof1 — o]l — sech(Ba(0+ 0,)) — sech(Ba(0 — 0,))]}0(0) -
O0) =H(O0+0;) —H(O—0;), —0,<0<0

and E(0) = E, everywhere else. In (C4) all parameters are defined in Eq. (12) of the text. For an excitation
symmetric about 0 =0, motions are also symmetric about 0 = 0. Divide the part of the circumference
0 < 0 < minto my arc segments 0; < 0 < 04,1 < j <my+ 1, where 0, =0 and 0,,,; = m. Assume a step-
wise distribution in modulus £, ..., Ej, ..., E, where E; applies to segment 0; < 0 < 0,,,. Substituting (C2)
in (Cl) and defining

f; = {No, O, Moo}, g = {v,w,wp}; (C5a)
yields

f;=Bi,C;, g =B,,C (C5b)
C={Cy Gy, ..., C6J}T, By; and B,; are 3 X 6 matrices with coefficients involving the exponential functions

in (C2) and their derivatives. Defining the state vector at an interface as S; = {f}, g,—}T, evaluating (C5b) at
the two ends of segment j then eliminating C; determines the transfer matrix of the jth segment relating
S{0)) to S{0p+1)
S(0,:1) = T;:18,(0;) = By} (0,)By;(0,:1)S,(0;)
By; (C6)
)

B =

SJ
gj
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Enforcing continuity of f; and g; at interfaces of segments and symmetry conditions at 0 = 0 and 0 = & pro-
duces a set of m, + 1 tri-diagonal block matrices in the interface state vectors S;. For the case of 3 arc seg-
ments, the tri-diagonal block system is similar in form to the global transfer matrix (31) except that all sub-
matrices are 3 x 3 and

(1) The first row [I —Z,] is replaced by [F, G,].
(ii) The last row [0 1] is replaced by [F, G;].

F,, G, and F,, G, are 3 x 3 symmetry matrices. Since the symmetry condition about 0 = 0 and 0 = = can be
expressed as Qyp = v = 0gw = 0, in turn all elements in F, and F,, are zero except for F;, = 1, and all elements
in G, and G, are zero except for Gy} = G33 = 1.

From here on, steps leading to transient response are identical to those adopted in Eqgs. (32)—(35) for the
disk.
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